Saline - Sodic Soils Chapter 10 Concepts to Master · Sources of alkalinity • Carbonate equilibria · Classes of salt-affected soils - Saline, Saline-sodic, Sodic • Plant tolerance • Reclamation of salt-affected soils Introduction • Found on more than 1/2 the Earth's arable • Rangelands, dryland farming, and irrigated agriculture • Precipitation insufficient to leach base cations and soluble salts (e.g. Ca⁺², K⁺, NaCl, and MgCl₂)

Introduction

- Irrigation can make soils into extremely productive
- Conversely irrigation can cause salt problems
 - Waters carry high quantity of dissolved solutes
 - Insufficient drainage
- 1/3 irrigated lands have salt problems

Introduction

- Acidity generated by Al⁺³ and H⁺
- Alkalinity generated by base cations
 - Ca+2, Mg+2, K+, Na+
- Humid regions (high rainfall) base cations are leached
 - Colloids have low base saturation

Introduction

- Arid regions (low rainfall) base cations are conserved
 - Cations generated by primary mineral weathering
 - Soluble salts and cations also generated by low quality irrigation water

		_	_	_	
-					
_					
_					
_					
_					
_					
_					
_					
_					
_					
_					

Role of Carbonates and Bicarbonates

- $CO_2 + H_2O = H_2CO_3$
- $H_2CO_3 + OH^- = HCO_3^- + H_2O pK_a = 6.35$
- $HCO_3^- + OH^- = CO_3^{2-} + H_2O \quad pK_a = 10.33$
- Based on the above equations as pH increases HCO₃⁻ and CO₃²- will be the dominate species
- CO₂ concentration in soils much higher than atmosphere

Carbonate, Cations, and pH

- Bicarbonate dominated system will have a pH of about 8.3
- The ubiquity of CO₂ in soils ensures that alkalinity accumulates in the form of carbonate and bicarbonate salts
- Base cations associated with carbonate anions determines severity of alkalinity in soils

Carbonate, Cations, and pH

Carbonate	Solubility (g/liter)
CaCO ₃	0.014
$MgCO_3$	1.76
Na_2CO_3	71
K_2CO_3	1120

Carbonate, Cations, and pH

- Bicarbonate forms of all cations are quite soluble ensuring high levels of HCO₃-
 - $HCO_3^- + H_2O = H_2CO_3 + OH^-$
- High concentration of carbonate (CO₃-)
 anions in Na system can produce very high
 pH values

Carbonate, Cations, and pH

- $Na_2CO_3 = 2Na^+ + CO_3^2$
- $CO_3^{2-} + H_2O = HCO_3^{-} + OH^{-}$
- $CaCO_3 = Ca^{+2} + CO_3^{2}$ (insoluble)
- Hence soils derived from primary minerals rich in Ca and Mg will experience lower pH values than Na
- Ca dominant cation in most alkaline soils

Nonsaline Arid Soils

- Nutrient deficiencies
 - P deficiencies (insoluble Ca and Mg phosphates)
 - Micronutrient deficiencies (Cations and Boron)
 - Chelates
 - Molybdenum toxicity
- CEC higher than humid soils
 - Dominated by 2:1 minerals
 - pH dependent CEC

<u>Development of Salt-Affected</u> Soils

- Insufficient precipitation to leach salts
 - Formed during primary mineral weathering or brought to soil through rainfall or irrigation
- Primarily chlorides and sulfates of calcium, magnesium, sodium, potassium
- Fossil deposits of extinct lakes, oceans, or underground saline water pools

Development of Salt-Affected Soils

- · Irrigation induced
 - Irrigation waters may contain significant quantities of soluble salts
 - Salts may accumulate
 - Not well drained
 - Insignificant quantity of water
 - Disaster to ancient cultures

Figure 10.4

Measuring Salinity and Alkalinity

- Salinity
 - Measured via electrical conductivity (decisiemens per meter dS/m)
 - Saturated paste extract
 - Apparent EC in field
 - Electromagnetic induction in field
 - Should be measured when soil is at field capacity

Measuring Salinity and Alkalinity

- Sodium status soil structure problems
 - Exchangeable sodium percentage (ESP) degree to which the exchange complex is saturated with sodium

$$ESP = \frac{Exchangeable sodium, cmol_c/kg}{CEC, cmol_c/kg} X 100$$

 ESP levels of 15 or greater are associated with pH values of 8.5 or higher

Measuring Salinity and Alkalinity

• Sodium adsorption ratio (SAR) - gives measurement of the comparative conc. of Na^+ , Mg^{+2} , and Ca^{+2} in solution

$$SAR = \frac{[Na^{+}]}{\sqrt{1/2 ([Ca^{+2} + [Mg^{+2}])}}$$

• Takes into consideration that the adverse affect of Na is moderated by Ca and Mg

Measuring Salinity and Alkalinity

- SAR is related to the ESP through the process of cation exchange
- Empirical relationship between SAR and ESP

$$\frac{\text{ESP}}{100 - \text{ESP}} = 0.015 \text{ SAR}$$

Classes of Salt-Affected Soils

- Saline Soils accumulation of neutral soluble salts (salinization)
- EC > 4 dS/m
- · White alkali soils
- ESP < 15
- SAR < 13
- pH < 8.5
- Crop growth affected by excess salts

Classes of Salt-Affected Soils

- Saline-Sodic soils
- EC > 4 dS/m
- ESP > 15 and SAR at least 13
- Crop growth adversely affected by excess salts and excess sodium
- Subject to rapid change

Classes of Salt-Affected Soils

- Sodic soils
- EC < 4 dS/M
- ESP > 15 and SAR > 13
- pH > 8.5 hydrolysis of sodium carbonate

$$2Na^{+} + CO_{3}^{2+} + H_{2}O = 2Na^{+} + HCO_{3}^{-} + OH^{-}$$

Classes of Salt-Affected Soils

- Plant growth constrained by high levels of Na⁺, OH⁻, and HCO₃⁻ and poor soil structure
 - Na⁺ causes soil to be in a dispersed condition due to the large hydrated radius of Na⁺
- Black alkali soils dispersed humus

Plant Growth

- Saline and Saline-Sodic soils High salts move water out of roots collapsing cells
- · Sodic soils
 - High pH
 - Toxicity of bicarbonate
 - Adverse affects of sodium
 - Low micronutrient availability
 - O₂ deficiency due to poor soil structure

Plant Growth

- Salt tolerance of plants
 - Four general groups
 - Sensitive
 - Moderately sensitive
 - Moderately tolerant
 - Tolerant

Management of Saline and Sodic Soils

- · Water quality
 - High SAR levels increase formation of sodic
 - Bicarbonates reduce levels of Ca⁺² and Mg⁺²
 - Concentrate elements to toxic levels (e.g. Se and Mo)

Reclamation of Saline Soils

- Ample irrigation water with low SARS and good soil drainage
- Leaching requirement or LR (crop specific)
 - $-LR = EC_w/EC_{dw}$
 - LR is water added in excess of the moisture needed to wet soil and meet ET
 - Dependent on quality of irrigation water and crop to be grown, and placement of irrigation water

Reclamation of Saline-Sodic Soils

- Adverse properties of both saline and sodic soils
- Leaching of soluble salts may increase ESP and pH
 - Reduce the level of exchangeable sodium
 - CaSO₄ (gypsum)
 - Remove excess salts

.=	

Reclamation of Saline-Sodic Soils

- Gypsum (CaSO₄ · H₂O)
- $2NaHCO_3 + CaSO_4 = CaCO_3 + Na_2SO_4 + CO_2 + H_2O$
- Clay-2Na⁺ + CaSO₄ = Clay-Ca⁺² + Na₂SO₄
- Soluble salt (Na₂SO₄) is easily leached from soil
- Sulfuric acid produces similar effect

Summary

- If properly managed dryland soils can be extremely productive
- · Water quality issues
- More research is needed to more thoroughly understand physical and chemical processes in salt effected soils